
Supplementary Appendix

B Additional Proofs

Proof of Proposition 2. Constructing an instance for S = 1 is trivial, so we focus on the case where

S � 2. Consider the following instance. Let the set of prices be D = {1, 3, 200} and assume that

�

0

= 1, �S�1

= 100, �S = 300 and �w = 0 for all w 2 {1, ..., S � 2}. Assume also that impatient

customers (w = 0) buy at all three price points, semi-patient customers (w = S � 1) buy at the

prices p = 1 and p = 3 and that patient customers (w = S) can be divided into two subgroups: 1/9

of them buy at both prices p = 1 and p = 3, while the other 8/9 of them only buy at the lowest

price, p = 1.

We now show that the optimal policy that the shortest optimal policy for this family of instances

is 2S periods long for any value of S � 2. We first consider policies that involve a single price,

then move on to policies that involve two prices and, finally, we look at policies that involve all

three prices. Among the three available static pricing policies, the optimal one is to o↵er a price

of p = 3, which produces average revenue of 403. From Lemma 2, we know that we only need to

use the lowest price in a given cyclic policy once. Therefore, among policies with two prices, it’s

su�cient to consider policies where the higher price is used for T � 1 periods and the lower price is

only used in period T . We now consider all three possible pairs of prices. The price pair 3 and 200

yields revenue 600� 197

T for T  S and 600� 497

S+1

for T = S + 1. The price pair 1 and 200 yields

revenue 600� 199

T for T  S and 600� 299

S+1

for T = S + 1 and the price pair 1 and 3 yields lower

revenues. The optimal two-price policy thus yields an average revenue of 600� 197

S .

We now consider policies that involve 3 di↵erent prices. By Theorem 1, it’s su�cient to search

among policies that are at most 2S periods long. For any T 2 {3, ..., 2S}, we can assign the lowest

price, p = 1, exclusively to period T by Lemma 2. For a given T , the decision that we need to

make is to what subset of {1, 2, ..., T � 1} to assign the price p = 3, with the rest of the periods

having price p = 200. Note that for w = 0, the e↵ective price et,0 is higher with p = 200 than with

p = 3 and for w = S� 1 and w = S, the e↵ective price et,w is higher with p = 3 than with p = 200.

This implies that any 3 price policy with length T  S and pT = 1 can be replaced by a better 2

price policy since any period t with price pt = 3 adds a period with e↵ective price et,0 = 3 but not

does add any e↵ective price et,w = 3 for w = S � 1 or w = S. For any T 2 {S + 1, ..., 2S}, the best

case scenario is to have a single period t with et,0 = 3 (there must be one period where the price

p = 3 is o↵ered) and all t0 with et0,w 2 {1, 3} for w = S � 1 and w = S. As Figure 9 shows, this

can be accomplished by having the price p = 3 exactly at period t = T �S, giving rise to a pricing

policy of the form (200, ..., 200, 3, 200, ..., 200, 1). For such a policy, the average revenue of the firm

is 600 � 198

T . By optimizing over T 2 {S + 1, ..., 2S}, we find that T = 2S is optimal, yielding a
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revenue of 600� 96

S , which is superior than the best revenue that can be obtained by a static or a

two-price policy.
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Figure 9: The optimization of a 3 price policy involves choosing in which subset of periods 1, ..., T�1
the firm will o↵er price p = 3 (price p = 1 must be o↵ered exclusively at time T ). The firm’s revenue
is decreasing in the number of times p = 3 shows up in the first row of the e↵ective prices table
and increasing in the number of times p = 3 shows up in the bottom two rows of the table. The
optimal solution is clearly to let p = 3 only at t = T � S.

Proof of Theorem 3. For any " > 0, we use an iterative procedure to construct two sets that we

denote by D" and DX
" . Initialize the sets so that D" = ; and DX

" = D. Let x be the smallest

element in DX
" (such an operation is valid since D is closed). Include x in the set D" and remove

[x, x + "
�L) from DX

" . The remaining elements in DX
" still form a closed set so we can repeat the

procedure above. Repeat this process until DX
" = ;. Once this process is over, D" is a subset of D

with at most V �L
" +1 elements such that any element in D is at most "

�L away from an element in

D".

By Theorem 2, one can compute a policy p" that is optimal for the set of prices D" in time

O(�V LS

2

/"). Let p be the optimal policy when the set of available prices is D, and let p̂" be the

rounding of the prices in p down to the closest element in the set D". By Lipschitz continuity,

R(p̂") � R(p)� ". The proof is complete since p" yields higher performance than p̂", i.e., R(p") �
R(p̂").

Proof of Proposition 3. Let p be an optimal policy that is cyclic and whose cycle is of length

S < L  2S. Assume without loss of generality that the lowest price is o↵ered last in the cycle. Let

k be an index such that pk is the second lowest price in the policy. If k < T � S, then k is a reset

period and, by the Policy Decomposition Lemma, there exists a shorter optimal policy. If k > S,

then consider the reflected policy pr. By the Reflection Lemma, this policy yields as much revenue

App. 2



as p. The period T +1� k is a reset period in the reflected policy, so by the Policy Decomposition

Lemma, there exists a shorter optimal policy.

Proof of Proposition 4. A corollary of the Reflection Lemma is that for any cyclic pricing pol-

icy with monotonically increasing prices, there exists a cyclic policy yielding the same revenues

with monotonically decreasing prices. Without loss of generality, let us prove the result for non-

decreasing policies. Consider an arbitrary cyclic non-decreasing policy with length T  2S. If

T  S + 1, there is nothing to prove. Suppose T > S + 1. Then the system necessarily resets

at periods 1 and T � S � 1 since p

1

= min{p
1

, ..., pS+1

}, and pT�S�1

= min{pT�S�1

, ..., pT }.
By the Policy Decomposition Lemma, there exists a cyclic policy with length less or equal than

max{T � S � 1, S + 1}  S + 1 that dominates the original policy.

Proof of Proposition 5. Consider an arbitrary cyclic monotonic policy with length T > j. Without

loss of generality, by the Reflection Lemma and Proposition 4, one may assume that the policy is

non-increasing over the cycle and that T  S + 1.

We next establish that one may construct a policy with weakly higher revenues such that

p

1

= v

0

, ..., pj = vj�1

.

Suppose that p

1

> v

0

. If pT � v

0

, then one may increase revenues by setting p

1

= p

2

= ... =

pT = v

0

. Otherwise, let k = min{i 2 {1, ..., S+1} : pi < v

0

}. In such a case, one may again increase

revenues by setting p

1

= p

2

= ... = pk = v

0

. Suppose now p

1

 v

0

. Note that since the policy is

non-increasing, one may assume that only impatient customers (with w = 0) purchase in period 1

when computing revenues. Hence, one may increase revenues by setting p

1

= v

0

. We conclude that

one may always weakly increase revenues by setting p

1

= v

0

while maintaining the non-increasing

structure.

Assuming that p

1

= v

0

and the policy is non-increasing, and using the fact that R(v
0

) 
R(v

1

)  ...  R(vj�1

), one may show in a recursive fashion that one may weakly increase revenues

by setting p

2

= v

1

,, ..., pj = vj�1

.

We now assume without loss of generality that pi = vi�1

, i = 1, ..., j.

Case 1: pj+1

 vj . Then increasing pj+1

to vj�1

does not alter the non-increasing structure

of the policy and yields an additional R(vj�1

) � R(vj) > 0 per cycle and hence strictly increases

revenues and the initial policy was suboptimal.

Case 2: pj+1

> vj . Since the policy is non-increasing, one has that pj+1

 pj = vj�1

. If

pj+1

< vj�1

, then one may strictly increase revenues by increasing it to vj�1

. Suppose that

pj+1

= vj�1

. In such a case, consider the policy q

1

, ..., qT that coincides with p with the exception

of period j + 1. In particular, we set qj+1

= v

0

.

R(q)�R(p) =
1

T

�

0

(v
0

� vj�1

) > 0.
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We deduce that p was necessarily suboptimal.

We conclude that any optimal cyclic policy with length T > j is non-monotone.

Proof of Proposition 6. We establish the result by constructing a sequence of problem instances

indexed by n such that cyclic monotone policies perform arbitrarily poorly as n increases to 1.

Preliminaries: Class of instances under consideration. Let k be a positive integer, and let

wi,n = 2ni � 1, i = 1, ..., k

Fixing k, we consider the following family of instances indexed by n. The price set is [0, V ].

The maximum willingness to wait is given by Sn = wk,n. Valuations are deterministic denoted by

vw. Furthermore, for all w 2 {0, 1, ..., wk,n} \ {wi,n : i = 1, ..., k}, vw = 0 and �w = 0, and for

i = 1, ..., k,

vwi,n = 2�in

�wi,n = 2in.

Next, we first lower bound the optimal performance, and then we upper bound the performance of

any cyclic monotone policy.

Step 1: Lower bound on optimal performance. We construct a particular cyclic policy p, with

cycle length Sn + 1, and lower bound its performance. Let

Ti,n = {j2in : j = 1, ..., 2(k�i)n}, i = 1, ..., k,

Tk+1,n = ;.

Consider the policy that applies the following prices

pt = vwi,n for t 2 Ti,n \ [k+1

j=i+1

Tj,n, i = 1, ..., k

pt = vw1,n + 1, otherwise.

In particular, no customer would ever purchase at time periods that do not belong to [k
i=1

Ti,n.
Consider the revenues generated by segment k, the most patient customers. All customers with

patience level wk,n purchase at time wk,n + 1 and the revenues generated are given by:

(wk,n + 1)�wk,nvwk,n = (wk,n + 1) = 2kn.

Consider now the revenues generated by segment k � 1. All customers purchase at times in Tk�1,n

except for those customers who could purchase at times in Tk,n = {wk,n + 1}. Hence, the revenues
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generated from segment k � 1 are lower bounded by

[wk,n + 1� (wk�1,n + 1)]�wk�1,nvwk�1,n = (wk,n + 1)


1� wk�1,n + 1

wk,n + 1

�
= 2kn(1� 2�n).

Repeating a similar argument for an arbitrary segment i, all segment i customers purchase at times

in Ti,n except for those customers who could purchase at times in [k+1

j=i+1

Tj,n. Hence, the revenues

generated from segment i are lower bounded by

[wk,n + 1� (wi,n + 1)| [k+1

j=i+1

Tj,n|]�wi,nvwi,n = wk,n + 1� (wi,n + 1)2(k�i�1)n = 2kn(1� 2�n)

Adding up the revenues generated by the k segments, one has that the total revenues generated

by the proposed cyclic policy are lower bounded by:

R(p) � k(1� 2�n). (16)

Step 2: Upper bound on the performance of the best policy in M. Without loss of generality,

one may restrict attention to policies with cycle length at most S+1; furthermore, by the reflection

lemma (Lemma 3), one may further restrict attention to non-increasing policies. Consider an

arbitrary cyclic monotone non-increasing policy p in M with cycle length T  Sn + 1. For j =

0, ..., k0, let mt,n = max{` : vw`,n > et,wi,n(p)}. Given that the policy is non-increasing over a

cycle, one may assume for revenue computations that all customers arriving at t purchase at time

min{t+ w, T}. The average revenues over a cycle may be written as

R(p) =
1

T

"
T�1X

t=1

t�1X

w=0

�wpt1{vw > pt}+
wk,nX

w=0

min{w + 1, T}pT1{vw > pT }
#

For t  T � 1,

t�1X

w=0

�wpt1{vw > pt} =
k�1X

i=1

�wi,npt1{vwi,n > pt} 
k�1X

i=1

�wi,nvwmt,n,n1{vwi,n > pt}  1 + (k � 2)+2�n
.

In addition,

wk,nX

w=0

min{w + 1, T}�wpT1{vw > pT } 
kX

i=1

min{wi,n + 1, T}�wi,nvwmT,n,n1{vwi,n > pT }

 T (1 + (k � 1)2�n).
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We deduce that

sup
p2M

R(p)  2(1 + (k � 1)2�n). (17)

Combining (16) and (17), one obtains

supp2MR(p)

supp2P R(p)
 2 + (k � 1)2�n

k(1� 2�n)
.

Since this bound is valid for arbitrary values of n, and for arbitrary values of k, (9) follows; the

proof is complete.

Proof of Proposition 7. To simplify notation, we assume without loss of generality that p�C+1

=

... = p

0

= V̄ + 1. Without loss of generality, we may assume that units are consumed in a FIFO

(First in First Out) fashion, as units are indistinguishable. Assuming such an order in consumption

will enable one to track units in the system and in particular track the purchasing price of a unit

consumed in a given period t.

For any policy y and T > 0, we let Uy
T =

PT
t=1

vxt � ptyt denote the utility generated over the

T first time periods.

Step 1: An upper bound on performance. Let At represent the set of periods such that, if the

consumer would stop purchasing at that period, they would still have enough inventory left over

to consume at period t, i.e., At = {`  t : I` � t� `}. Then, under the FIFO rule for consumption

and given the fact that consumption is never delayed, the price paid for a unit consumed in period

t (if consumption takes place) is given by pjt where jt = min{` : ` 2 At}.
Note that for all ` 2 At, by the feasibility of the policy, t � `  I`  c, and hence, ` � t � c.

This implies that if a unit is consumed in period t, i.e., xt > 0, then the price paid for that unit,

pjt , is such that pjt � eet,c(p).
For any T > 0,

U

y
T

T

 1

T

TX

t=1

xt(v � pjt)  1

T

TX

t=1

xt(v � eet,c(p))  1

T

TX

t=1

(v � eet,c(p))+.

We deduce that for any feasible policy y,

lim inf
T!1

U

y
T

T

 lim inf
T!1

1

T

TX

t=1

(v � eet,c(p))+. (18)

Step 2: An optimal consumer policy. Consider a policy y where the consumer purchases a unit

to consume at period l at the first period starting from l� c when she observes a price that is equal
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to eel,c(p), assuming this price is at most v.

We represent whether the consumer buys a unit at time t to consume at time l by zl,t and

wether the consumer owns a unit at time t to consume at time l by ql,t. Using this representation,

the total purchases at time t equal

yt =
t+cX

l=t

zl,t, (19)

and whether consumption occurs at time t is xt = qt,t. The policy we are considering is given by

the following algorithm:

Set I
1

= 0, q`,s = 0, z`,s = 0, for `, s 2 Z.
For all t � 1,

– For all ` 2 {t, t+ 1, ..., t+ c},
— If pt = ee`,c(p), v � pt and q`,t�1

= 0, Then set z`,t = 1.

— Set q`,t = q`,t�1

+ z`,t.

We first show that the policy is feasible and then derive its performance. The first step is to

establish that It =
Pt+c

`=t+1

q`,t. We proceed by induction. For t = 0, the result is trivial. Suppose

the result is true for t� 1. One has

It = It�1

+ yt � xt =
t+c�1X

`=t

q`,t�1

+
t+cX

`=t

z`,t � xt =
t+cX

`=t+1

q`,t + (qt,t�1

+ zt,t)� xt

where the second equality follows from the induction hypothesis and Eq. (19); and the third equality

follows from the definition of q·,· and the fact that qt+c,t�1

= 0. Note that (qt,t�1

+ zt,t) � xt =

qt,t � xt = 0. One deduces that It =
Pt+c

`=t+1

q`,t and the induction step is complete.

The result above in particular implies that It � 0 for all t � 1 and that It =
Pt+c

`=t+1

q`,t  c,

and hence the policy is feasible.

We next now derive the performance of the policy. We establish by induction that

U

y
T =

TX

t=1

(v � eet,c(p))+ �
T+cX

t=T+1

TX

s=t�c

zt,sps.

Consider the base case. For T = 1, one has that

U

y
1

= x

1

v � p

1

y

1

= z

1,1v � p

1

z

1,1 � p

1

1+cX

t=2

zt,1p1 = (v � p

1

)+ �
1+cX

t=2

1X

s=t�c

zt,sps,
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where the last term has all elements equal to 0 for all s 6= 1. The base case is verified. Suppose the

result is true for T � 1 � 1. One has that

U

y
T = U

y
T�1

+ xT v � pT yT

(a)
=

T�1X

t=1

(v � eet,c(p))+ �
T�1+cX

t=T

T�1X

s=t�c

zt,sps + xT v � pT

T+cX

`=T+1

z`,T � pT zT,T

=
T�1X

t=1

(v � eet,c(p))+ + xT v � pT zT,T �
T�1X

s=T�c

zt,sps �
T�1+cX

t=T+1

T�1X

s=t�c

zt,sps � pT

T+cX

`=T+1

z`,T

=
T�1X

t=1

(v � eet,c(p))+ + xT v �
TX

s=T�c

zt,sps �
T+cX

t=T+1

TX

s=t�c

zt,sps

(b)
=

TX

t=1

(v � eet,c(p))+ �
T+cX

t=T+1

TX

s=t�c

zt,sps,

where (a) follows from the induction hypothesis and Eq. (19); and (b) follows from the fact that

xT v �
PT

s=T�c zt,sps = (v � eet,c(p))+.
The average utility generated by the policy by time T is given by

1

T

TX

t=1

(v � eet,c(p))+ =
1

T

TX

t=1

(v � eet,c(p))+ � 1

T

T+cX

t=T+1

TX

s=t�c

zt,sps

� 1

T

TX

t=1

(v � eet,c(p))+ � cmax{p : p 2 D}
T

.

Hence the long-run average performance is given by

lim inf
T!1

U

y
T

T

= lim inf
T!1

1

T

TX

t=1

(v � eet,c(p))+.

The latter, in conjunction with the upper bound on the performance on the performance of any

policy (see Eq. (18)), establishes the optimality of the policy y.
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